• română
    • English
    • français
    • Deutsch
    • español
    • italiano
  • română 
    • română
    • English
    • français
    • Deutsch
    • español
    • italiano
  • Logare
Vezi articolul 
  •   Pagina principală
  • Scientific papers - Annals of "Dunarea de Jos" University of Galati - Analele științifice ale Universității "Dunărea de Jos" din Galați
  • Fascicula I
  • 2003- 2017 (economie; informatică aplicată)
  • 2008_fascicula1
  • Vezi articolul
  •   Pagina principală
  • Scientific papers - Annals of "Dunarea de Jos" University of Galati - Analele științifice ale Universității "Dunărea de Jos" din Galați
  • Fascicula I
  • 2003- 2017 (economie; informatică aplicată)
  • 2008_fascicula1
  • Vezi articolul
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Intelligent Knowledge Management System from a Semantic Perspective

Thumbnail
View/Open
ugal_f1_2008_6_Mazilescu.pdf (147.2Kb)
Dată
2008-01
Autor
Mazilescu, Vasile
Metadata
Arată înregistrarea completă a articolului
Abstract
Knowledge Management Systems (KMS) are important tools by which organizations can better use information and, more importantly, manage knowledge. Unlike other strategies, knowledge management (KM) is difficult to define because it encompasses a range of concepts, management tasks, technologies, and organizational practices, all of which come under the umbrella of the information management. Semantic approaches allow easier and more efficient training, maintenance, and support knowledge. Current ICT markets are dominated by relational databases and document-centric information technologies, procedural algorithmic programming paradigms, and stack architecture. A key driver of global economic expansion in the coming decade is the build-out of broadband telecommunications and the deployment of intelligent services bundling. This paper introduces the main characteristics of an Intelligent Knowledge Management System as a multiagent system used in a Learning Control Problem (IKMSLCP), from a semantic perspective. We describe an intelligent KM framework, allowing the observer (a human agent) to learn from experience. This framework makes the system dynamic (flexible and adaptable) so it evolves, guaranteeing high levels of stability when performing his domain problem P. To capture by the agent who learn the control knowledge for solving a task-allocation problem, the control expert system uses at any time, an internal fuzzy knowledge model of the (business) process based on the last knowledge model.
URI
http://www.eia.feaa.ugal.ro/images/eia/2008/Vasile%20Mazilescu.pdf
http://10.11.10.50/xmlui/handle/123456789/958
Colecții
  • 2008_fascicula1 [18]

DSpace 6.0 | Copyright © Arthra Institutional Repository
Contactați-ne | Trimite feedback
Theme by 
Atmire NV
 

 

Răsfoiește

În tot DSpaceComunități; ColecțiiDupă data publicăriiAutoriTitluriSubiecteAceastă colecțieDupă data publicăriiAutoriTitluriSubiecte

Contul meu

Conectare

DSpace 6.0 | Copyright © Arthra Institutional Repository
Contactați-ne | Trimite feedback
Theme by 
Atmire NV