Arată înregistrarea sumară a articolului
About the Free Parameter Vibrations of the Mechanical Systems
dc.contributor.author | Cauteș, Gheorghe | |
dc.date.accessioned | 2017-11-13T13:22:50Z | |
dc.date.available | 2017-11-13T13:22:50Z | |
dc.date.issued | 2008 | |
dc.identifier.issn | 1224-5615 | |
dc.identifier.uri | http://10.11.10.50/xmlui/handle/123456789/4839 | |
dc.description | The Annals of ''Dunarea de Jos'' University of Galati : Fascicle XIV MECHANICAL ENGINEERING, ISSN 1224 - 5615 | ro_RO |
dc.description.abstract | The oscillation movement of a mechanical non-linear system is not easy to solve exactly in an analytical way. The approximate solutions are based on different methods and give different values with different approximation degree. In this paper it is shown that for such differential equations, such as m x - c × tk × x = 0 which describe free parametric vibrations of some elastic systems, there can be found analytical or approximate solutions. Using the substitution x = x × y , y=y(t), the differential equation becomes a Riccati special equation for which, using the Bessel functions, we obtain analytical or approximate solutions. | ro_RO |
dc.language.iso | en | ro_RO |
dc.publisher | Universitatea "Dunărea de Jos" din Galați | ro_RO |
dc.subject | parameter | ro_RO |
dc.subject | mechanical non-linear system | ro_RO |
dc.title | About the Free Parameter Vibrations of the Mechanical Systems | ro_RO |
dc.type | Article | ro_RO |
Fișiere la acest articol
Acest articol apare în următoarele colecții(s)
-
2008 fascicula14 [17]